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Abstract 

The general aim of this project was to employ a model-

based approach for aligning instructional strategies with 

technical task performance. The modeling system used in 

this effort was the Improved Performance Research 

Integration Tool (IMPRINT). IMPRINT has been used 

successfully by the United States Military to predict human 

performance in complex and dynamic operational 

environments. At the outset of this project, however, 

IMPRINT did not include a training component to 

determine the effects of instructional approaches on task 

performance within various learning taxonomic domains. In 

order to achieve the project goal, the project team carried 

out an extensive literature review on the effects of training 

on technical task performance and developed a training 

effects algorithm based on the meta-analysis of relevant 

studies. The training effects algorithm acts as a plug-in to 

the IMPRINT system and has been shown to effectively 

model training effects in a technical mission. 

 

1.0 INTRODUCTION/PERSPECTIVE 
The United States federal government has 

invested considerable resources over the last 

twenty years developing methods to model the 

impact of new systems on human resources and 

performance. By using human performance 

modeling systems, it is possible to predict the 

impact of various input factors such as personnel 

characteristics, environmental stressors, and task 

assignments on workforce performance and to 

plan for the selection and hiring of new personnel. 

The modeling system studied within this project is 

the Improved Performance Research Integration 

Tool (IMPRINT), which consists of a set of 

automated aids to conduct human performance 

analyses. The U.S. Army Research Laboratory, 

Human Research & Engineering Directorate 

developed the Improved Performance Research 

Integration Tool (IMPRINT) to support 

Manpower and Personnel Integration 

(MANPRINT) and Human Systems Integration 

(HSI). This tool had been used successfully by the 

U.S. Army to predict human performance in 

complex and dynamic operational environments 

in order to set realistic system requirements; to 

identify soldier-driven constraints on system 

design; and to evaluate the capability of available 

manpower and personnel to effectively operate 

and maintain a system under environmental 

stressors (U.S. Army Research Laboratory 

website, accessed July 2009). 

 

IMPRINT has also been used to target warfighter 

performance concerns in system acquisition; to 

estimate soldier-centered requirements early, and 

to make those estimates count in the decision-

making process. As a research tool, IMPRINT 

incorporates task analysis, workload modeling, 

performance shaping, degradation functions and 

stressors, and embedded personnel characteristics 

data. While previous versions of IMPRINT 

focused on Army missions, IMPRINT Pro is a tri-

service tool with the capability to examine Army, 

Navy, Air Force, Marine, and Joint missions and 

systems (U.S. Army Research Laboratory website, 

accessed July 2009). 

IMPRINT assists users in estimating the likely 

performance of a new system by facilitating the 

construction of flow models that describe the 

scenario, the environment, and the mission that 

must be accomplished. At the completion of a 

simulated mission, IMPRINT can compare the 

minimum acceptable mission performance time 



and accuracy to the predicted performance. This 

allows the user to determine whether the mission 

met specific performance requirements.  

 

The actual data input and analysis within 

IMPRINT occurs at the task level – analyzing 

high-level functions (e.g., troubleshooting a 

circuit board) in terms of smaller-scale tasks (e.g., 

determining whether or not there is desired 

resistance at a particular component), and then 

indicating the types of task skills required for 

proper execution of the smaller-scale tasks. 

IMPRINT has been used successfully to predict 

human performance in complex and dynamic 

operational environments.  

 

Despite its capabilities for modeling human 

performance, IMPRINT does not include a 

sophisticated training component to determine the 

effects of instructional approaches on task 

performance within various taxonomic domains. 

The goal of this project was to determine whether 

and to what extent IMPRINT could predict the 

efficacy of alternative instructional approaches for 

different technical tasks. To accomplish this goal, 

the research team drew upon the technical training 

and human performance literature to develop a 

training algorithm that will interface with 

IMPRINT. This IMPRINT enhancement is 

designed to predict the efficacy of alternative 

training effects that include delivery media, 

learner characteristics, and instructional 

approaches for technical tasks such as those 

carried out by Air Force maintenance personnel 

within the cognitive, perceptual, motor, and 

communication domains. 

 

Scientific modeling and computer simulation has 

played a role in both the social and natural 

sciences. There have been major advances with 

regard to computer modeling in fields such as 

economics, environmental and political sciences 

(Gilbert & Conte, 1995; and Krugman, 1996). 

Social science computer simulations are one of 

the most exciting applications that are supported 

by the increased computing power. However, 

most of these models and simulations are not 

setup to account for the effects of varying 

instructional strategies. 

 

2.0 OBJECTIVES/PURPOSES 
The main objective of this project was to draw 

upon the technical training and human 

performance literature to develop a training 

algorithm that will interface with IMPRINT. This 

IMPRINT enhancement is designed to predict the 

efficacy of alternative instructional approaches for 

critical Air Force maintenance and logistics tasks 

within the cognitive and psychomotor domains. 

The ultimate goal is to help transform Air Force 

training systems into flexible, responsive systems 

that develop individual and group problem-

solving and decision-making abilities in the 

general domains of maintenance and air crew 

training. 

 

The training effects algorithm developed as a 

result of our efforts allows us to determine how 

different instructional strategies impact 

performance on an individual as well as an 

organizational level. Models connected to the new 

system will be able to predict how training can 

influence the human agents of that system. For 

instance, the modeling outcome allows for the 

prediction of which instructional strategy (or 

grouping of strategies) enables the system to be 

fielded in the most cost effective and rapid way 

with the least amount of training. The ultimate 

goal is that modelers can apply the findings 

meaningfully in an IMPRINT model to account 

for instructional training effects on task 

performance. 

 

3.0 TECHNIQUES 
In order to develop a training effects algorithm, a 

meta-analysis was conducted to statistically 

synthesize the literature review findings in order 

to inform the algorithm development. Meta-

analysis is a set of statistical techniques for 

combining information from different studies (as 



identified from an exhaustive literature review) to 

derive an overall estimate of a treatment's effect. 

Given that the results from different studies 

investigating different independent variables 

(instructional strategy effects) are measured on 

different scales, the dependent variable in a meta-

analysis must be some standardized measure of 

effect size. Effect sizes are measures of the 

strength or magnitude of a relationship of interest 

and have the advantage of being comparable 

across all of the studies. To describe the results of 

comparative experiments reviewed in the 

literature, the usual effect size indicator is the 

standardized mean difference (d) that compares 

the treatment and control means, or an odds ratio 

if the outcome of the experiments is a 

dichotomous variable (success versus failure). 

With continuous variables as predictors, the 

correlation itself is the indicator of the effect size. 

We transform all other indices to the metric of the 

correlation coefficient, primarily via the 

transformation r = d / √(d ² + 4). A meta-analysis 

can then be performed on studies that describe 

their findings as correlation coefficients together 

with the transformed values that represent the 

impact of treatment interventions. 
 

Since meta-analysis has a unique role in this study, 

some weaknesses were found. First of all, when 

we create the standardized regression models 

using predictors from different studies we will 

usually not have inter-correlations among those 

predictors. Thus we are essentially assuming that 

variables are not correlated, which is not the case 

for many of our predictors. Also as Becker and 

Wu (2007) have pointed out, one of the challenges 

meta-analysts face when intending to combine 

results from regression studies (or here from 

treatment and correlational studies) is that the 

predictors usually differ from study to study even 

when researchers are studying the same outcome. 

Such “unparallel models” make it difficult to 

combine the results directly because the effects of 

different predictors are held constant in different 

studies when computing the effect of a focal 

predictor. The third limitation is that studies have 

examined different populations of interest. In 

general the target populations are students but 

their education levels have a wide range, as do 

their initial levels of experience. This situation 

could be problematic when it comes to combining 

the research results, particularly if the various 

treatment interventions are differentially effective 

across populations. 

 

The main purpose of doing meta-analysis in this 

project was to provide information necessary for 

algorithm development and modeling to show the 

relationship among all independent and dependent 

variables. Ultimately, combinations of treatment 

types, durations etc., will serve as inputs to the 

model in order to project potential outcomes of 

different training scenarios. To accomplish this, 

standardized regression models will be created for 

each outcome from the data obtained via effect-

size calculations. In order to generate these 

models we must estimate standardized regression 

coefficients that will be represented by the mean 

correlations.  

 

4.0 RESULTS 
4.1 Algorithm Development and Modeling 
The meta-analysis process resulted in a 

standardized regression model that allows 

prediction of the task performance time of an 

alternative instructional approach given: (1) the 

task performance time of the anchor instructional 

approach (MAnchor), (2) its standard deviation (SD), 

(3) the task Taxons array, and (4) the meta-

analysis R-Values. The R-Values represent the 

distance in standard deviations between the 

conditions. These mean R-Values are used to 

generate a training and task performance 

algorithm that is implemented in the current 

version of IMPRINT. The formula that is used to 

get the projected alternative group performance 

time is: 

 

MAlternative = MAnchor + 2 × R-Value × SD.  

 



For example, if a defined task has normal 

performance time with Mean=50 and SD=20 and 

the R-Value that represents the relationship 

between the anchor and alternative instructional 

approaches equals 0.615, than the new 

performance time will be: 

 

MAlternative = MAnchor + 2 × R-Value × SD = 50 + 2 

× 0.615 × 20 = 74.6. 

 

As a first step to implement the algorithm within 

IMPRINT, we created an external plug-in that can 

be called by IMPRINT. In this method, the 

algorithm was coded to a plug-in function. In a C# 

environment, a new function named 

"GetAdjustedTime" gets the task mean, standard 

deviation, and Taxons array as inputs and returns 

a new adjusted time. In an external user interface, 

the modeler can select an anchor and alternative 

to be compared and change the R-Values for each 

category. Figure 1 presents an overview of the 

plug-in, the users’ interfaces, IMPRINT, and two 

text files, and shows how those elements connect 

with each other.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plug-in interfaces and communication 

with IMPRINT  

 

 

Figure 1. Plug-in interfaces and communication 

with IMPRINT 

 

The plug-in is called from IMPRINT tasks 

expressions with the task mean, standard 

deviation, and taxons array as parameters. The 

plug-in then uses the parameters and two text files 

(MLC.txt and Rtcc.txt) to calculate a new adjusted 

time for a task, given the particular sort of training 

or instructional intervention envisioned. This time 

is returned as the task performance time. 

 

Even though this plug-in enables a comparison 

between two instructional strategies, there are a 

few limitations that needed to be addressed. First, 

the modeler has to change the tasks in the model 

to use expression (i.e., code) instead of 

distributions (i.e., concrete values of Mean and 

SD in case of normal distribution). Because it is 

not possible to use both the “Use Distribution” 

mode and “Use Expression” mode at the same 

time, the modeler needs to code the mean and 

standard deviation, and then call the plug-in 

function (see Figure 2 for a typical expression).  

 

A second limitation to the first implementation is 

that the plug-in could not get direct access to the 

task Taxons. In IMPRINT, tasks can be broken 

down into categories called Taxons. This 

categorization is used to describe the workload 

composition of a task. There are nine IMPRINT 

Taxons (Visual, Numerical, Information 

Processing, Fine Motor-Discrete, Fine Motor-

Continuous, Gross Motor Light, Gross Motor 

Heavy, Communication (Read & Write), and 

Communication (Oral)) grouped into four 

domains (Perceptual, Cognitive, Motor, and 

Communication).  

 

The algorithm multiplies the effect of the 

cognitive categories by the percent indicated for 

the cognitive Taxons (including perceptual, 

cognitive and communication) and the effect of 

the motor categories by the motor Taxon. Thus, if 

the specified task is defined as motor, only the 

motor categories effects will influence the task 

performance time. To be used, in this 

implementation the Taxons need be coded in the 

expression and sent as parameters to the plug-in. 
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Figure 2. Expression code used to call the plug-in 

function  

 

To overcome these limitations, a newer version of 

IMPRINT was developed to include the plug-in 

algorism as an integral part of IMPRINT.  The 

current version of IMPRINT includes a Training 

Effects Calculator (TEC) that uses the algorithm 

developed by the FSU team.  

 

The Training Effects Calculator includes the 

following features:  

 

(1) Ability to apply the effects of changing 

training characteristic (i.e., anchor vs. alternative) 

within a specific category to an existing mission 

without having to code each task manually. 

 

(2) Ability to see and modify the relationship (i.e., 

R-Value) between two specific training 

characteristics within the IMPRINT environment 

 

(3) Application of Taxon Characteristics to 

determine level of training effect for a specific 

mission task. 

 

(4) Ability to print out a comparison report for 

mission level performance for two training 

characteristics within a specific category. 

 

 

 

5.0 SCIENTIFIC SIGNIFICANCE OF THE 

PROJECT 
Through consolidating and synthesizing evidence 

linking training methods and strategies to 

performance, it was possible to develop 

meaningful, analysis-driven IMPRINT training 

algorithm. We have evidence that it is possible to 

take existing literature and transform it into a 

dataset and consequently an algorithm to be used 

within the IMPRINT system. This algorithm 

works as an IMPRINT plug-in that is capable of 

modeling the effects of instructional training 

effects on technical task performance within the 

cognitive and psychomotor domains. This plug-in 

can be continually updated as new training and 

performance literature emerges. It is also possible 

to extend the algorithm to model training effects 

on performance within the perceptual and 

communication domains.  

 

While we have demonstrated the concept that 

empirically based training strategy effects drawn 

from the existing literature can be modeled within 

IMPRINT, there is future work to carry out in 

order to finalize a training effects (TE) algorithm. 

Key research and development tasks include: 

fleshing out the other taxon characteristics r-

matrices to allow for additional comparisons; 

IMPRINT / Plugin interfacing to automatize the 

linking of the TE Algorithm with in IMPRINT 

missions; further develop the interaction effects of 

multiple TE categories; and carrying out a 

validation study to verify current algorithm 

assumptions. 

 

With current findings from this study and future 

research and development, the TE Algorithm can 

have a strong impact for systems designers by 

providing them with empirically based results to 

help them make decisions about appropriate 

training strategies as integrated into systems 

operations. Ultimately, these results allow 

designers to see the effectiveness and efficiency 

of different training methods. This work further 

provides a model to conduct related work in other 



areas such as analysis of training and development 

strategies effects for first responders or even 

terrorist organizations with the intent of 

understanding the impact of training strategies on 

organizational operations and performance. 
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